Вопрос Помогите сделать наводку для ai aimbot

Начинающий
Статус
Оффлайн
Регистрация
24 Ноя 2024
Сообщения
7
Реакции[?]
0
Поинты[?]
0
Здраствуйте прошу помощи сделать наводку для ai aimbot
В скрипте присутствует ai vision там наглядно видно что он детектит врагов но скрипт не наводит попрошу переписать наводку для aimbot и отдать сразу весь готовый скрипт а не советы просто в роботе с aimbot 0

Python:
import time
import numpy as np
import mss
import cv2
import pyautogui
from ultralytics import YOLO

# Initialize YOLOv8 model (using the smallest model for performance)
model = YOLO('best.pt')  # Use 'yolov8n' for better performance

# Screen resolution for 2560x1600
screen_width, screen_height = 2560, 1600
monitor = {"top": 0, "left": 0, "width": screen_width, "height": screen_height}
screen_capture = mss.mss()

# FPS calculation
last_time = time.time()
fps = 0

# Capture window size: 400x400 centered on the screen
window_width, window_height = 400, 400
center_x = screen_width // 2
center_y = screen_height // 2
fov_left = center_x - (window_width // 2)
fov_right = center_x + (window_width // 2)
fov_top = center_y - (window_height // 2)
fov_bottom = center_y + (window_height // 2)

# Function to process each frame
def process_frame(img):
    global fps, last_time

    # Resize image to reduce processing load (scale down to 640x640)
    img_resized = cv2.resize(img, (640, 640))

    # Object detection using YOLOv8
    results = model(img_resized)

    # Process detected objects
    for result in results:
        boxes = result.boxes
        for box in boxes:
            x1, y1, x2, y2 = box.xyxy[0]  # Get bounding box coordinates
            confidence = box.conf[0]

            if confidence > 0.5:  # Only assist if confidence is greater than 50%
                # Draw bounding box around detected object
                img_resized = cv2.rectangle(img_resized, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2)

                # Calculate center of the detected object
                obj_center_x = (x1 + x2) / 2
                obj_center_y = (y1 + y2) / 2

                # Convert to full screen coordinates
                scale_x = screen_width / window_width
                scale_y = screen_height / window_height

                # Scale object center to full screen
                screen_obj_x = fov_left + obj_center_x
                screen_obj_y = fov_top + obj_center_y
                screen_obj_x = int(screen_obj_x * scale_x)
                screen_obj_y = int(screen_obj_y * scale_y)

                # Calculate the mouse movement from the center of the screen
                move_x = screen_obj_x - center_x
                move_y = screen_obj_y - center_y

                # Apply a factor to make the movement smooth (adjust this factor for sensitivity)
                sensitivity = 5  # Increase sensitivity if movement is too slow
                move_x *= sensitivity
                move_y *= sensitivity

                # Move the mouse from the center to the detected object
                pyautogui.moveRel(move_x, move_y)

    # Calculate FPS
    new_time = time.time()
    fps = 1 / (new_time - last_time)
    last_time = new_time

    # Show FPS on the image
    cv2.putText(img_resized, f"FPS: {int(fps)}", (10, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)

    # Display image
    cv2.imshow("AI Vision Window", img_resized)

    # Check for 'q' key press to exit
    if cv2.waitKey(1) & 0xFF == ord('q'):
        return False
    return True

# Function to capture the screen and process it
def capture_screen():
    while True:
        # Capture the screen
        screenshot = screen_capture.grab(monitor)
        img = np.array(screenshot)

        # Convert from BGR (OpenCV) to RGB (YOLO)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        # Crop the image based on the FOV (400x400 window)
        img_cropped = img[fov_top:fov_bottom, fov_left:fov_right]

        # Process the frame
        if not process_frame(img_cropped):
            break

    cv2.destroyAllWindows()

# Set up the AI Vision window
def setup_window():
    # Create a named window that can be resized
    cv2.namedWindow("AI Vision Window", cv2.WINDOW_NORMAL)
    cv2.moveWindow("AI Vision Window", 0, 0)  # Move to the top-left corner
    cv2.resizeWindow("AI Vision Window", window_width, window_height)  # Set window size

# Run the setup and capture screen in the main thread
setup_window()

# Start the screen capture in the main thread
capture_screen()
 
Начинающий
Статус
Оффлайн
Регистрация
23 Авг 2023
Сообщения
51
Реакции[?]
7
Поинты[?]
7K
Здраствуйте прошу помощи сделать наводку для ai aimbot
В скрипте присутствует ai vision там наглядно видно что он детектит врагов но скрипт не наводит попрошу переписать наводку для aimbot и отдать сразу весь готовый скрипт а не советы просто в роботе с aimbot 0

Python:
import time
import numpy as np
import mss
import cv2
import pyautogui
from ultralytics import YOLO

# Initialize YOLOv8 model (using the smallest model for performance)
model = YOLO('best.pt')  # Use 'yolov8n' for better performance

# Screen resolution for 2560x1600
screen_width, screen_height = 2560, 1600
monitor = {"top": 0, "left": 0, "width": screen_width, "height": screen_height}
screen_capture = mss.mss()

# FPS calculation
last_time = time.time()
fps = 0

# Capture window size: 400x400 centered on the screen
window_width, window_height = 400, 400
center_x = screen_width // 2
center_y = screen_height // 2
fov_left = center_x - (window_width // 2)
fov_right = center_x + (window_width // 2)
fov_top = center_y - (window_height // 2)
fov_bottom = center_y + (window_height // 2)

# Function to process each frame
def process_frame(img):
    global fps, last_time

    # Resize image to reduce processing load (scale down to 640x640)
    img_resized = cv2.resize(img, (640, 640))

    # Object detection using YOLOv8
    results = model(img_resized)

    # Process detected objects
    for result in results:
        boxes = result.boxes
        for box in boxes:
            x1, y1, x2, y2 = box.xyxy[0]  # Get bounding box coordinates
            confidence = box.conf[0]

            if confidence > 0.5:  # Only assist if confidence is greater than 50%
                # Draw bounding box around detected object
                img_resized = cv2.rectangle(img_resized, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2)

                # Calculate center of the detected object
                obj_center_x = (x1 + x2) / 2
                obj_center_y = (y1 + y2) / 2

                # Convert to full screen coordinates
                scale_x = screen_width / window_width
                scale_y = screen_height / window_height

                # Scale object center to full screen
                screen_obj_x = fov_left + obj_center_x
                screen_obj_y = fov_top + obj_center_y
                screen_obj_x = int(screen_obj_x * scale_x)
                screen_obj_y = int(screen_obj_y * scale_y)

                # Calculate the mouse movement from the center of the screen
                move_x = screen_obj_x - center_x
                move_y = screen_obj_y - center_y

                # Apply a factor to make the movement smooth (adjust this factor for sensitivity)
                sensitivity = 5  # Increase sensitivity if movement is too slow
                move_x *= sensitivity
                move_y *= sensitivity

                # Move the mouse from the center to the detected object
                pyautogui.moveRel(move_x, move_y)

    # Calculate FPS
    new_time = time.time()
    fps = 1 / (new_time - last_time)
    last_time = new_time

    # Show FPS on the image
    cv2.putText(img_resized, f"FPS: {int(fps)}", (10, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)

    # Display image
    cv2.imshow("AI Vision Window", img_resized)

    # Check for 'q' key press to exit
    if cv2.waitKey(1) & 0xFF == ord('q'):
        return False
    return True

# Function to capture the screen and process it
def capture_screen():
    while True:
        # Capture the screen
        screenshot = screen_capture.grab(monitor)
        img = np.array(screenshot)

        # Convert from BGR (OpenCV) to RGB (YOLO)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        # Crop the image based on the FOV (400x400 window)
        img_cropped = img[fov_top:fov_bottom, fov_left:fov_right]

        # Process the frame
        if not process_frame(img_cropped):
            break

    cv2.destroyAllWindows()

# Set up the AI Vision window
def setup_window():
    # Create a named window that can be resized
    cv2.namedWindow("AI Vision Window", cv2.WINDOW_NORMAL)
    cv2.moveWindow("AI Vision Window", 0, 0)  # Move to the top-left corner
    cv2.resizeWindow("AI Vision Window", window_width, window_height)  # Set window size

# Run the setup and capture screen in the main thread
setup_window()

# Start the screen capture in the main thread
capture_screen()
Пожалуйста, авторизуйтесь для просмотра ссылки.
(Без обид)
 
Болтовня ничего не стоит. Покажите мне код.
Пользователь
Статус
Оффлайн
Регистрация
15 Фев 2017
Сообщения
326
Реакции[?]
122
Поинты[?]
0
А какой смысл AI наводки если она работает с задержкой да и контроля отдачи нету.
 
Начинающий
Статус
Оффлайн
Регистрация
24 Ноя 2024
Сообщения
7
Реакции[?]
0
Поинты[?]
0
Я смогу сделать анти отдачу просто нужна помощь с наводкой а скрипт на питоне потому что есть Yolo и сам он легче. Просто нужна помощь
 
Сверху Снизу